
VST Plug-in Preset
Match
Version 1.0.0

©2007-2012 Christian-W. Budde

Welcome
Thank you for downloading my entry for the KVR Developer Contest 2012.
With VST Plug-in Preset Match it is possible to match a VST 2.x plug-in
to a given reference VST plug-in for a certain piece of music. With the
included ASIO VST plug-in it is also possible to match a VST plug-in to an
external hardware device.

NOTE: This tool needs a lot of CPU and especially time for
matching. Please don't expect immediate results!

In order to get the most out of the VST Plug-in Preset Match, please
spend a few moments reading this brief manual.

License
The VST Plug-in Preset Match has a very simple license:

1. VST Plug-in Preset Match is freeware. This means that you are
free to use this application in any context. Also you are free to share it
on a personal base (ie. give it to friends). However, only the entire
unaltered archive, including this document, may be shared. Public
redistribution is only allowed on request.

2. Copyright of the code and the VST Plug-in Preset Match tool
remain property of Christian-W. Budde.

3. This tool is provided at no cost; therefore the author Christian-W.
Budde assume no responsibility for any negative effects that may
occur to the end user or the equipment used to run the tool.

4. Magazine editors are welcome to include the tool on cover mount
discs or similar media; However, it is mandatory to inform the author
Christian-W. Budde about this. A copy of the publication is always
appreciated, but not expected.

5. The included example VST plug-ins, contained with this tool apply to
the same license with the exception, that these VST plug-in may not
be used outside this suite in a commercial context.

©2007-2012 Christian-W. Budde

! !

Usage
The VST Plug-in Preset Match tool is designed to be as simple as
possible. A wizard, which is located on the first tab guides through the
different steps to setup and run the tool.

On the wizard tab the reference plug-in and the plug-in, whose preset shall
be matched to the reference can be loaded. Furthermore a reference signal
can be chosen. By default an internally generated sine sweep will be used.

As plug-in any VST version 2.x effect plug-in can be loaded. Instruments or
synths are not yet supported, but might also work if they can act as effect
plug-in even without any midi input. Keep in mind, that the tool has been
developed for classical effects such as filters (EQs) and dynamics (gate
compressor, limiter). Despite some warnings, there are no further
limitations, but the matching is never guaranteed.

Make sure that the selected VST plug-in is suitable before wasting
precious energy (CPU cycles) by trying to match apples with oranges!

Once the plug-in has been loaded, it can be tweaked on the second tab.
Alternatively, any program (or even entire banks) can be loaded from the
'Program' menu item. The recent program (sometimes called preset) is
stored as [Plug-in name].fxp as soon as the application is closed.

©2007-2012 Christian-W. Budde

! !

As example the GraphicEQ.dll, which is shipped with the tool has been
loaded. The plug-in implements a simple graphic EQ with a band distance
of one octave (= roughly twice the previous frequency). To trial the
matching, just pick any band and dial a random gain (e.g. maximize the 1.2
kHz band).

Next, switch back to the wizard or use the 'File' menu to load a plug-in that
shall be matched to the reference plug-in. In this demonstration we are
using the SimplePeakFiler.dll, which implements a single parametric peak
filter.

©2007-2012 Christian-W. Budde

Since both selected plug-ins implement LTI systems, the internally
generated reference signal can be used for matching. The advantage of the
test signal compared to other signals is the fact, that it is short, has a high
RMS level and will hardly produce the so-called inter-sample clippings.

The sweep is recommended for all LTI systems and all other time invariant
systems that only contain a limited amount of non-linearities. This includes
filters, EQs and reverb/hall/delay plug-ins.

For matching dynamics or distortion effects, it might be more realistic to
match the preset for a certain piece of music. If the piece is long enough and
contains different content (fast and slow - staccato and legato parts) , it is
likely to be valid for other types of music.

Please note that the longer the reference signal is, the more time and
CPU cycles are required to calculate the matching.

Typically start with a short reference signal. If you are unpleasant with the
results, select a different (longer) reference signal.

©2007-2012 Christian-W. Budde

! !

Once the setup has been configured, the matching can be started. Either hit
the [Match] button on the wizard tab or select the 'File'->'Match' from the
main menu. The shortcut for matching (start and stop) is F10.

Before the matching process starts, a dialog is shown on which the matching
options are shown:

In the matching options dialog the target for matching can be selected. The
default setting is reference plug-in. If no reference plug-in has been
specified either the neutral position (reference signal without further
processing) or a preprocessed reference signal (if available) can be chosen.

So far, only a time domain method ('Time Signal') is available under
domain. It compares every sample from the target with the processed signal
(by the plug-in, which should be matched). To improve matching, the level
difference can between reference and processed audio can be ignored. In
fact, if checked, the level is assumed to be an additional parameter as well.
With this switch enabled, polarity issues can also be solved.

©2007-2012 Christian-W. Budde

Unfortunately, the time domain method is very prone to phase and
time shifts (caused by latencies within the plug-in).

Due to the above reason, it might be impossible to match a plug-in with the
time domain method, even if matching by ear seems to be very simple (since
the human ear ignores phase and short latencies). In particular it is not
possible with this method to match a linear phase EQ with a minimum
phase EQ!

A second method 'Magnitude' has already been developed. However, due to
time constraints, it could only be verified to be working in the 32-bit
version. If you want to test it in the 64-bit application on your own risk,
please double click the 'Domain' box to make it selectable.

Related to the time domain method it is possible to chose the error measure
between 'RMS', 'Mean' and 'Peak'. It is recommended to use RMS, but in
certain situations other error measures can be useful as well.

To speed up processing, the matching can take place on additional, hidden
instances of the plug-in. For now, only a second instance is used, but with
multi-thread support, even more instances might be instantiated. In case
the plug-in runs on external hardware, such as the UAD and the external
hardware runs out of resources, it might be useful to deactivate this option,
but in every other case it should be allowed.

The last step before matching actually takes place is to chose the
parameters. A list of available parameters is shown on the bottom. Make
sure at least one parameter is checked.

For parameters, which acts as selectors or switches, the matching will
be slow (brute force), so exclude these parameters and tweak by hand!

To start matching, simply press the [Start Matching] button

The dialog can be avoided by either holding down the [Shift] key on the
keyboard or by deselecting 'Window'->'Always Show Options Dialog' from
the main menu.

Once started, the matching can be stopped at any time by pressing [F10]
again or by hitting the (now relabeled) [Stop] button.

©2007-2012 Christian-W. Budde

! !

! !

Matching
The matching is performed using a differential evolution algorithm. From
WIKIPEDIA we know:

“In computer science, differential evolution (DE) is a method that
optimizes a problem by iteratively trying to improve a candidate
solution with regard to a given measure of quality. Such methods
are commonly known as metaheuristics as they make few or no
assumptions about the problem being optimized and can search very
large spaces of candidate solutions. However, metaheuristics such as
DE do not guarantee an optimal solution is ever found.”

In short means we are shuffling our VST parameters dozens of times, select
the best matches and shuffle again (dozens of times) based on these results.
This is repeated until the user stops the matching process.

The shuffling generates a set of shuffled parameters, called the generation.
The population (number of parameters sets) of a generation depends on the
number of parameters.

The statistics below show the development of the matching error for 835
generations. As can be seen the error continuously decreases over time
(generation). Typically it will stuck sooner or later (only little progress).

©2007-2012 Christian-W. Budde

With the setup described above, the matching works very well. After 835
generations, the matching error is down to -144,03 dBFS, which means that
most sound cards can not make it audible any more (perfect 24-bit
soundcards have a dynamic range of 144 dB, but typically far less, due to
resistor noise).

If we continue matching a limit at about -400 dB will be reached, which is a
limit of the single precision floating point arithmetic used (in particular it's
the de-normal prevention).

As can be seen, the selected 1.2 kHz from the graphic EQ is actually a
1.25 kHz peak filter with a bandwidth of 1 octave and 15 dB gain.

Performance
On the Core2Duo reference machine the matching was performed in less
than a minute.

The good performance is due to the fact, that the matched plug-in was kept
very simple, the reference signal was short and only 3 parameters were
matched. Also the plug-in was optimized using handwritten assembler code.

As written above, more parameters will result in longer matching time. In
fact, if you double the number of parameters to match it takes 4 times until
you have calculated the same number of generations (each generation is
bigger). Furthermore the matching process itself will be more complex and
thus more time-consuming, as it is assumed that the parameters might
interact.

If it is known that the parameters are independent from each other, it can
be useful to match all parameters separately.

Before wasting precious CPU-cycles, make sure that matching is
possible, by only matching certain parts and by using short signals!

©2007-2012 Christian-W. Budde

! !

ASIO VST Plug-in
With the help of the ASIO VST Plug-in it is possible to treat external
hardware as if it was a VST plug-in. However, since both interfaces were
never designed to work this way, it is likely that it will not run without
issues.

In particular the VST Plug-in Preset Match is very sensitive about
additional latencies. If the latency reported by the ASIO sound card does
not match the real latency – in particular due to additional hardware delay
caused by A/D and D/A converters – matching especially in time domain
only might probably fail.

If the delay is a real issue for matching, it is also possible to capture and
preprocess the reference signal externally and provide it instead of at
reference VST plug-in.

On the plug-in's GUI it is possible to select an ASIO driver, input channel
and output channel. Since the VST plug-in is mono, it is only possible to
capture one channel (no stereo effects can be matched).

©2007-2012 Christian-W. Budde

Driver Select

Known Issues
The algorithm does not contain magic and thus it's hardly possible to match
a compressor plugin with an EQ plugin. If you are unsure if the plugins
work, you can load them into the VST Plugin Analyser first to check some
basic properties.

For example if a chosen plugin contains a non-linearity (which can be
identified by checking the harmonic distortion), the other plugin should be
capable of reproducing the non-linearity (distortion) as well. If it does not,
the match can never be perfect!

If the plugin contains such non-linearities, it is often also oversampled to
reduce aliasing. In the likely case, that the oversampling filters of both
plugins are not identical, matching can also never be perfect!

With several 3rd party VST plug-ins there are still matching issues, even if
the effect is of the same type. Not seldom, the reason for this is that the
developers of the VST plug-ins did not make everything right in the first
place. Although the ear excuses many issues easily (especially in regards of
the often inaudible phase), technical applications which are evaluating the
output based on physical measures, fail easily. If the VST plugin has some
latencies (aka delays), which the developers forget to compensate, it's
hardly audible in the mix (it maybe sounds like the instrument is some
(centi-) meters farther away).

This is also the reason, why linear and minimum phase EQs can hardly be
matched (at least not with the time domain method). As the phase is nearly
inaudible, both may sound equal, but technically, they are very different.
Selecting the magnitude domain will ignore the phase information, which
improves matching (makes it possible), but the result might not be perfect.

In some cases, VST plug-in developers forget to implement the reset for the
VST plug-in. If used in a DAW, this will hardly be audible, but for this
application, it really complicates the matching, as it is inevitable important
to always start from scratch, when comparing different preset settings. If
the last trial has an influence on the next trial, it's likely that wrong
assumptions about the quality of matching will be made.

A workaround for this issue would be to reload the plug-in for every trial or
feed it with zeroes. Both will increase the time for matching dramatically.

©2007-2012 Christian-W. Budde

What does 'cost' mean?
To evaluate the quality of the matching, a cost function is introduced. It
represents the physical difference, between the reference and the matched
signal (expressed in dB) the A perfect match would mean error measures of
below -100 dBFS, but often a lower error measure is also satisfying. Since
the error is shown independently from the input signal, it might be
overestimated. Not seldom, an error measure of 'only' about -24 dBFS is
already inaudible. If the combined error (with with the input signal) is
evaluated, the difference may only be little. Since the dB measure is a
relative measure, the difference related to a full scale input signal would
then be only 0.5 dB, which is most often already inaudible for inexperienced
ears.

©2007-2012 Christian-W. Budde

Feedback / Bug Reports
I am always eager to hear feedback or have bugs reported. The easiest way is
to send me a mail to: Christian@aixcoustic.com

Beyond the scope of the KVR Developer Contest it is not yet planned to
develop this tool further. However, the code base may be integrated into
version 2.0 of the VST Plug-in Analyser, for which I'm currently
collecting funds.

If you like this tool and if you want its features to be added to the new VST
Plug-in Analyser 2.0, feel free to contact the author under the above
email address.

Version History
1.0.0 First release!

Credits

• Programming: Christian W. Budde

• Special Thanks: Swen Müller

• Favourite music artist during work: Earth, Wind & Fire

• Documentation based on a template by Greg Pettit

VST name and technology © Steinberg GmbH
The VST logo is a trademark of Steinberg GmbH

©2007-2012 Christian-W. Budde

mailto:Christian@aixcoustic.com?subject=Fast%20Compressor

